Skip to main content
  • New Internet Architecture Board, IETF Trust, IETF LLC and Internet Engineering Task Force Leadership Announced

    Members of the incoming Internet Architecture Board (IAB), the IETF Trust, the IETF Administration LLC (IETF LLC) Board of Directors, and the Internet Engineering Steering Group (IESG)—which provides leadership for the Internet Engineering Task Force (IETF)—have been officially announced, with new members selected by the 2021-2023 IETF Nominating Committee.

      13 Feb 2023
    • Informing the community on third-party correspondence regarding the W3C

      In accordance with our policy of transparency, this blog post is being published in order to keep the community informed about recent correspondence with lawyers acting on behalf of the Movement for an Open Web.

      • Lars EggertIETF Chair
      8 Feb 2023
    • Six Applied Networking Research Prizes Awarded for 2023

      Six network researchers have received Internet Research Task Force Applied Networking Research Prize (ANRP), an award focused on recent results in applied networking research and on interesting new research of potential relevance to the Internet standards community.

      • Grant GrossIETF Blog Reporter
      9 Jan 2023
    • Travel grants allow Ph.D. students to participate at IETF meeting in-person

      Sergio Aguilar Romero and Martine Sophie Lenders, both Ph.D. students in technology fields, attended and participated in the IETF 115 meeting in London with assistance through travel grants from the Internet Research Task Force.

      • Grant GrossIETF Blog Reporter
      6 Jan 2023
    • Impressions from the Internet Architecture Board E-Impact Workshop

      The IAB ran an online workshop in December 2022 to begin to explore and understand the environmental impacts of the Internet. The discussion was active, and it will take time to summarise and produce the workshop report – but the topic is important, so we wanted to share some early impressions of the outcomes.

      • Colin PerkinsIAB Member
      • Jari ArkkoIAB Member
      6 Jan 2023

    Filter by topic and date

    Filter by topic and date

    Privacy and Trustworthiness for Web Notifications

    • Martin ThomsonIETF Participant

    18 Oct 2017

    RFC 8188 builds on existing protocols to provide a new option for delivering trustworthy messages containing confidential information over the Internet.

    Mailboxes with flags

    HTTPS (HTTP over TLS) is possibly the mostwidely used security protocol in existence. HTTPS is a two-party protocol; it involves a single client and a single server. This aspect of the protocol limits the ways in which it can be used.

    The recently published RFC 8188 provides protocol designers a new option for building multi-party protocols with HTTPS by defining a standardized format for encrypting HTTP message bodies. While this tool is less capable than other encryption formats, like CMS (RFC 5652) or JOSE (RFC 7516), it is designed for simplicity and ease-of-integration with existing HTTP semantics.

    The WebPush protocol (RFC 8030) provides an example of the how the encrypted HTTP content coding could be used.

    In WebPush, there are three parties: a user agent (in most cases this is a Web browser), an application server, and a push service. The push service is an HTTP server that has a special relationship with the user agent. The push service can wake a user agent from sleep and contact it even though it might be behind a firewall or NAT.

    The application server uses the push service to send a push message to a user agent. The push service receives a message from the application server, and then forwards the contents of the push message to the user agent at the next opportunity. It is important here to recognize that the push service only forwards messages. It has no need to see or modify push messages. Both the user agent and the application server only communicate via the push service, but they both want some assurance that the push service cannot read or modify push messages. Nor do they want the push service to be able to create false push messages.

    For example, an alerting service might use WebPush to deliver alerts to mobile devices without increased battery drain. Push message encryption ensures that these messages are trustworthy and allows the messages to contain confidential information.

    The document draft-ietf-webpush-encryption, which was recently approved for publication as an RFC, describes how push messages can be encrypted using RFC 8188. The encrypted content coding ensures that the push service has access to the information it needs, such as URLs and HTTP header fields, but that the content of push messages is protected.

    WebPush is available in some web browsers through the W3C Push API, which requires push message encryption.


    Share this page