Skip to main content
  • New Internet Architecture Board, IETF Trust, IETF LLC and Internet Engineering Task Force Leadership Announced

    Members of the incoming Internet Architecture Board (IAB), the IETF Trust, the IETF Administration LLC (IETF LLC) Board of Directors, and the Internet Engineering Steering Group (IESG)—which provides leadership for the Internet Engineering Task Force (IETF)—have been officially announced, with new members selected by the 2021-2023 IETF Nominating Committee.

      13 Feb 2023
    • Informing the community on third-party correspondence regarding the W3C

      In accordance with our policy of transparency, this blog post is being published in order to keep the community informed about recent correspondence with lawyers acting on behalf of the Movement for an Open Web.

      • Lars EggertIETF Chair
      8 Feb 2023
    • Six Applied Networking Research Prizes Awarded for 2023

      Six network researchers have received Internet Research Task Force Applied Networking Research Prize (ANRP), an award focused on recent results in applied networking research and on interesting new research of potential relevance to the Internet standards community.

      • Grant GrossIETF Blog Reporter
      9 Jan 2023
    • Travel grants allow Ph.D. students to participate at IETF meeting in-person

      Sergio Aguilar Romero and Martine Sophie Lenders, both Ph.D. students in technology fields, attended and participated in the IETF 115 meeting in London with assistance through travel grants from the Internet Research Task Force.

      • Grant GrossIETF Blog Reporter
      7 Jan 2023
    • Impressions from the Internet Architecture Board E-Impact Workshop

      The IAB ran an online workshop in December 2022 to begin to explore and understand the environmental impacts of the Internet. The discussion was active, and it will take time to summarise and produce the workshop report – but the topic is important, so we wanted to share some early impressions of the outcomes.

      • Colin PerkinsIAB Member
      • Jari ArkkoIAB Member
      6 Jan 2023

    Filter by topic and date

    Filter by topic and date

    Improving Security in the Internet: The Diffie-Hellman Case Study

    • Paul Wouters
    • Jari Arkko

    22 Oct 2015

    A recent paper on shortcomings of Diffie-Hellman key exchange has received attention and raised questions about security on the Internet, as Diffie-Hellman is used for cryptographic handshakes in popular Internet protocols.

    Great Paris Cipher

    While the specific issues from the paper are new, the underlying issues have been known for a while by those working on security-related protocols in the IETF. In fact, work across the IETF in this area is underway, motivated in part by an IETF-wide discussion begun nearly two years ago which identified pervasive surveillance as an attack on the Internet that should be mitigated in the design of Internet protocols (RFC 7258).

    For example, the IETF Using TLS in Applications (UTA) Working Group summarized security attacks in RFC 7457, including those related to the ones raised in the paper. The goal of RFC 7457 is to motivate improvements to some of the protocols used to secure Internet transmissions, such as Web pages that have URLs that start with “HTTPS://”. Following RFC 7457, the UTA Working Group has produced RFC 7525, which provides recommendations on improving the security of deployed services that use TLS by using specific, stronger cipher suites.

    Similar work is happening with IKE/IPsec, which is a protocol suite for secure Internet Protocol (IP) communications by authenticating and encrypting each IP packet of a communication session. The IETF IPsecME Working Group regularly updates its cryptographic algorithm advice for implementors. The original IKE specification in RFC 2409 and updated in RFC 3526 together specify the two most commonly used Diffie-Hellman key sizes of 1024 (DH 1024) and 1536 bits. This was updated in IKE version 2 in RFC 4307 in 2005 where it recommended Diffie-Hellman key sizes of 2048 bits and demoted DH 1024. However, the industry has been slow adopting these updated recommendations and as a result of the recent revelations, work has started on updating RFC 4307 which will completely remove support for DH 1024.

    There are also some subtleties relating to IPsec that make it different from TLS. For example, unlike TLS servers, IPsec can initially appear to accept weaker cryptographic options only to reject those later in the session establishment phase. As such, it is actually nearly impossible for an Internet probe to determine the strength of the cryptographic parameters required by an IPsec server. For more information, see this article by Paul Wouters.

    So, as we approach the second anniversary of the discussion that led to RFC 7258, the IETF community has done considerable work to strengthen trust in the Internet, in line with its mission of “making Internet work better”. But, a lot of work also remains – in deploying the better versions, in building defences to new attacks, and in understanding the issues and possible improvements. This is a continuous process.

    (Picture credits: The Great Paris Cipher from UK National Archives)


    Share this page